
18.06 FINAL - SOLUTIONS

PROBLEM 1

(1) Compute the determinant of


−1 2 5 −3
1 −3 −3 2
−2 7 8 −5
−4 7 2 −1

 by row reduction/product of pivots.

Show all the steps. (10 pts)

Solution: Let’s apply Gaussian elimination to row reduce the matrix:
−1 2 5 −3
1 −3 −3 2
−2 7 8 −5
−4 7 2 −1

 r2+r1−−−→


−1 2 5 −3
0 −1 2 −1
−2 7 8 −5
−4 7 2 −1

 r3−2r1−−−−→


−1 2 5 −3
0 −1 2 −1
0 3 −2 1
−4 7 2 −1

 r4−4r1−−−−→


−1 2 5 −3
0 −1 2 −1
0 3 −2 1
0 −1 −18 11

 r3+3r2−−−−→


−1 2 5 −3
0 −1 2 −1
0 0 4 −2
0 −1 −18 11

 r4−r2−−−→


−1 2 5 −3
0 −1 2 −1
0 0 4 −2
0 0 −20 12

 r4+5r3−−−−→


−1 2 5 −3

0 −1 2 −1

0 0 4 −2

0 0 0 2


The determinant is the product of the pivots, so (−1) · (−1) · 4 · 2 = 8.

(2) Compute the determinant of


0 −2 0 0 1
0 −1 1 0 0
4 0 0 5 0
0 0 7 3 0
0 0 3 0 −1

 by cofactor expansion.

Show all the steps. (10 pts)



Solution: Let’s do cofactor expansion along the third row (any other row or column would
work equally well):

(−1)3+14 · det


−2 0 0 1
−1 1 0 0
0 7 3 0
0 3 0 −1

+ (−1)3+45 · det


0 −2 0 1
0 −1 1 0
0 0 7 0
0 0 3 −1


(it’s acceptable to note that the second determinant has a full column of zeroes, so it is 0,
but I will compute it nonetheless for completeness). For each of the two determinants above,
let’s do cofactor expansion along the first row:

(−1)3+14 ·

(−1)1+1(−2) · det

1 0 0
7 3 0
3 0 −1

+ (−1)1+41 · det

−1 1 0
0 7 3
0 3 0

+

+(−1)3+45 ·

(−1)1+2(−2) · det

0 1 0
0 7 0
0 3 −1

+ (−1)1+41 · det

0 −1 1
0 0 7
0 0 3


Finally, we may compute the four determinants above by cofactor expansion along rows 1,
3, 1, 3, respectively:

(−1)3+14 ·
(

(−1)1+1(−2) · (−1)1+11 · det

[
3 0
0 −1

]
+ (−1)1+41 · (−1)3+23 · det

[
−1 0
0 3

])
+

+(−1)3+45 ·
(

(−1)1+2(−2) · (−1)1+21 · det

[
0 0
0 −1

]
+ (−1)1+41 · (−1)3+33 · det

[
0 −1
0 0

])
=

(−1)3+14 · (6 + (−9)) + (−1)3+45 · (0 + 0) = −12

For the remainder of this problem, consider the following 10× 10 matrix:

A =



1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1


(3) This matrix has two eigenvalues: just by inspecting the matrix, eyeball/guess what they
are. Characterize the subspaces of eigenvectors corresponding to each eigenvalue. (10 pts)

Characterizing each of the two subspaces above can be done by either giving a basis of it, or
by describing it implicitly as “the subspace of vectors satisfying the equation blah”.



Solution: Any vector

 x1
...
x10

 that satisfies x1 + · · ·+ x10 = 0 is in the nullspace of A, which

is just the subspace of eigenvectors corresponding to the eigenvalue 0. Another eigenvector

is

1
...
1

, since:

A

1
...
1

 = 10

1
...
1


and so the other eigenvalue is 10.

(4) What are the geometric multiplicities of the eigenvalues of the matrix A from the previ-
ous part? What are the algebraic multiplicities? What is the characteristic polynomial?

Explain how you know. (15 pts)

Solution: The subspace {x1 + · · ·+ x10 = 0} has dimension 9 (10 degrees of freedom minus
1 constraint), so the geometric multiplicity of the eigenvalue 0 is 9. The subspace spanned

by the eigenvector

1
...
1

 is one-dimensional, so the geometric multiplicity of the eigenvalue 10

is 1. Since 9 + 1 = 10 = the size of the matrix, we conclude that the geometric multiplicities
of the eigenvalues are as large as they can be. Therefore, they are also equal to the algebraic
multiplicities, and so the characteristic polynomial is:

p(λ) = (−λ)9(10− λ) = λ10 − 10λ9

(5) Based on the previous parts, what is the determinant of the matrix:

B =



2 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1
1 1 2 1 1 1 1 1 1 1
1 1 1 2 1 1 1 1 1 1
1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 2 1 1 1 1
1 1 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 1 1 2


Explain how you know. (5 pts)



Solution: We have B = A+ I and so:

detB = det(A+ I) = p(−1) = (−1)10 − 10(−1)9 = 11

PROBLEM 2

Throughout this problem, the matrix A has the following Singular Value Decomposition:

A =
1

3

2 2 −1
x 2 2
2 −1 2


︸ ︷︷ ︸

U

3 0
0 1
0 0


︸ ︷︷ ︸

Σ

1

5

[
4 −3
3 y

]
︸ ︷︷ ︸

V T

where the matrices U and V are orthogonal and x, y denote two mystery real numbers.

The matrices U and V include the prefactors 1
3

and 1
5
, so the top-left entry of U is 2

3
and

the top-left entry of V is 4
5
; recall that orthogonal means that UTU = I3 and V TV = I2.

(1) What are the values of x, y based on the information provided? Explain how you know.
(5 pts)

Solution: We must have x = −1 and y = 4 because the matrices U and V are orthogonal,
i.e. have orthonormal columns. So, for example, the dot product of columns 1 and 2 of U is:

1

9
(2 · 2 + x · 2 + 2 · (−1)) = 0

which gives us x = −1.

(2) Fill in the blanks (no explanation needed):

• the rank of the matrix A is 2 (5 pts)

• the eigenvalues of ATA are 9,1, and those of AAT are 9,1,0 (5 pts)

• a non-zero eigenvector of AAT is

 2
2
−1

 (any one eigenvector will suffice) (5 pts)



(3) Write A as a sum of two rank 1 matrices. (5 pts)

It suffices to write these rank 1 matrices as a column times a scalar times a row, namely
u · σ · vT ; you don’t need to explicitly multiply the column, scalar and row out.

Solution: The SVD gives us:

A =
1

3

 2
−1
2

 · 3 · 1

5

[
4 −3

]
+

1

3

 2
2
−1

 · 1 · 1

5

[
3 4

]
(4) Without computing A out explicitly, calculate the vector:

A

[
4
−3

]
Explain how you know. (5 pts)

Solution: We have

[
4
−3

]
= 5v1 where v1, namely the first column on V , is the first right

singular vector of the matrix A. Therefore, the fact that:

Av1 = σ1u1 implies A

[
4
−3

]
= 5 · 3 · 1

3

 2
−1
2


(5) What is the maximum of the following quantity as v ranges over non-zero vectors in R2:

||Av||
||v||

and for what v is it achieved? (10 pts)

Here ||v|| denotes the length of the vector v. Note that there is a whole line of v’s for which
the maximum is achieved; you simply need to find one non-zero vector on this line.

Solution: The maximum is the largest singular value of A, namely 3, and its achieved for
the first left singular vector of A, namely:

1

5

[
4
−3

]
(6) Compute the pseudo-inverse A+ of A, and explain how you got it (your answer for A+

should be a 2× 3 matrix with explicit numbers as entries). (5 pts)

Solution: The pseudo-inverse is given by:

A =
1

5

[
4 3
−3 4

] [
1
3

0 0
0 1 0

]
1

3

 2 −1 2
2 2 −1
−1 2 2

 =
1

45

[
26 14 −1
18 27 −18

]



(7) Use A+ to compute a least squares solution to Av =

1
1
1

 (i.e. you must find a vector

v ∈ R2 such that Av is as close as possible to

1
1
1

; explain which formula you are using).

(5 pts)

Solution: The least squares solution in question is:

A+

[
1
1

]
=

1

15

[
13
9

]

PROBLEM 3

In this problem, we will consider the matrix:

X =

1 −1 1 −1
1 1 1 1
1 0 α 0


for some mystery real number α.

(1) What does α need to be so that the matrix has rank 2? How do you know? (10 pts)

Solution: the rank is equal to the dimension of the row/column space. Since the first and
second columns of X are clearly linearly independent, having rank 2 would require the third
column to be a linear combination of the first two. In other words:1

1
α

 = x

1
1
1

+ y

−1
1
0


Equating the coefficients reads x− y = x+ y = 1 (which can be easily solved to give x = 1
and y = 0) and α = x. We conclude that α = 1.

Note that we would accept “eyeballing” the answer α = 1, as long as its clear that the
student meant that the third column is supposed to be a linear combination of the others.

(2) For the specific value of α from part (1), write down bases for the column space and the
row space of X. (Don’t forget that there are as many vectors in a basis as the rank) (10 pts)



Solution: As we’ve seen in the previous solution, a basis for the column space is given by:1
1
1

 and

−1
1
0


Similarly, a basis for the row space is given by the first two rows:

1
−1
1
−1

 and


1
1
1
1


because they are linearly independent (also, the third row is a linear combination of the first
two rows, specifically 1

2
times the first row plus 1

2
times the second row).

(3) Use the Gram-Schmidt process, and your result from part (2), to write down bases for:

• the left nullspace of X

• the nullspace of X

(α is still the specific number from part (1), which ensures that X has rank 2). (20 pts)

Solution: The left nullspace is a linear subspace of R3, explicitly defined as the orthogonal
complement of the column space. Thus, to get a basis of the left nullspace, we need to
complete an orthogonal basis of the column space to an orthogonal basis of R3; the vectors
we add in this “completion” will be the required basis of the left nullspace.

So let’s construct an orthogonal basis of R3, starting from the chosen basis of the column
space that we found in the previous part plus a random third vector:

v1 =

1
1
1

 and v2 =

−1
1
0

 and v3 =

13
9
20


(you must show why the third vector is not a linear combination of the first two, e.g. by
computing the determinant of a 3 × 3 matrix, or an ad hoc attempt to write it as a linear
combination of the first two vectors, with an explanation of why it fails). First we rescale
v1 to make it have length 1:

q1 =
v1

||v1||
=

1√
3

1
1
1





Then we subtract a multiple of q1 from v2 so as to make them orthgonal (this step is
unnecessary in this case because v1 and v2 are already orthogonal, but let’s do it anyway):

w2 = v2 − (v2 · q1)q1 = v2 =

−1
1
0


Then we rescale w2 to make it have length 1:

q2 =
w2

||w2||
=

1√
2

−1
1
0


Next, we subtract a linear combination of q1, q2 from v3 to make them orthogonal:

w3 = v3 − (v3 · q1)q1 − (v3 · q2)q2 = v3 − 14
√

3q1 + 2
√

2q2 =

13− 14− 2
9− 14 + 2
20− 14 + 0

 =

−3
−3
6


Finally, we rescale w3 to make it have length 1:

q3 =
w3

||w3||
=

1√
54

−3
−3
6

 =
1√
6

−1
−1
2


Since q1, q2 form an (orthogonal) basis of the column space, their orthogonal complement
(i.e. the left nullspace) is spanned by q3.

Similarly, the nullspace is a linear subspace of R4, explicitly defined as the orthogonal com-
plement of the row space. Let’s do the same procedure as in the paragraphs above: take any
basis of the row space (e.g. the first two rows, as we saw in part (2)), complete them to an
arbitrary basis of R4, and apply Gram-Schmidt. The resulting vectors that are not among
the basis of the row space will be among the basis of the nullspace. So let’s start from:

v1 =


1
−1
1
−1

 and v2 =


1
1
1
1

 and v3 =


1
1
0
0

 and v4 =


2
1
1
0


(explain why the four vectors above form a basis). I won’t go through the entire process,
since you’re likely to have started off from different v3 and v4 which will affect the final
answer, but we expect you to go through the same process as in the previous paragraphs
(v  w  q). With the choices we made above, we get:

q1 =
1

2


1
−1
1
−1

 and q2 =
1

2


1
1
1
1

 and q3 =
1

2


1
1
−1
−1

 and q4 =
1

2


1
−1
−1
1


Thus a basis of the nullspace is given by q3 and q4.



(4) Compute the general solution of the system of equations:

Xv =

0
2
1


where α is still the specific number from part (1), which ensures that X has rank 2. (10 pts)

Solution: The general solution is equal to:

vgeneral = vparticular +w

where w is a general element in the nullspace of X. Since we have already computed a basis
for the nullspace of X (namely q3 and q4 in part (3)), we have:

w = α


1
1
−1
−1

+ β


1
−1
−1
1


for arbitrary numbers α and β. As for a particular solution, we need to find numbers a, b, c, d
such that:

X


a
b
c
d

 =

0
2
1

 ⇔ a

1
1
1

+ b

−1
1
0

+ c

1
1
1

+ d

−1
1
0

 =

0
2
1


Since a, b, c, d can be arbitrary, we might as well pick c = d = 0. Then the equation above
compels us to have a = 1, and then by back substitution b = 1. We conclude that the general
solution to the system of equations is:

vgeneral =


1
1
0
0

+ α


1
1
−1
−1

+ β


1
−1
−1
1


for arbitrary numbers α and β.

PROBLEM 4

(1) Write the complex number i in polar form:

i = reiθ

where r is a positive real number, and θ is an angle. Explain your answer. (5 pts)

Solution: The absolute value and argument of the complex number i = 0 + 1 · i are given
by the equations:

r =
√

02 + 12 = 1 and cos θ = 0, sin θ = 1 ⇒ θ =
π

2



We conclude that i = e
iπ
2 .

(2) Write the integer powers ik (for all k ∈ Z) both in:

• Cartesian form a+ bi;

• polar form reiθ.

Explain your answer. (10 pts)

Solution: Since i4 = 1, we have:

ik =


1 if k = 4n

i if k = 4n+ 1

−1 if k = 4n+ 2

−i if k = 4n+ 3

in Cartesian form. Meanwhile, in polar form, we have:

ik = e
ikπ
2

Consider the following “square” wave function:

f(x) =

1 if x ∈
[
−π,−π

2

)
or x ∈

[
0,
π

2

)
0 if x ∈

[
−π

2
, 0
)

or x ∈
[π

2
, π
)

and extended to all x ∈ R by periodicity: f(x+ 2π) = f(x).

-π -π

2

π

2
π

1



(3) Compute its complex Fourier series:

(∗) f(x) =
∑
k∈Z

cke
ikx

by which I mean, compute the coefficients ck. Simplify as much as possible. (10 pts)

Solution: The Fourier coefficients are given by the formula:

ck =
1

2π

∫ π

−π
f(x)e−ikxdx =

1

2π

(∫ −π
2

−π
e−ikxdx+

∫ π
2

0

e−ikxdx

)
We clearly have c0 = 1

2
, while for k 6= 0 we have:

ck =
1

2π

(
e−ikx

−ik

∣∣∣−π2
−π

+
e−ikx

−ik

∣∣∣π2
0

)
=
e
ikπ
2 − eikπ + e−

ikπ
2 − 1

−2πik

We have eiπ = −1 and e
iπ
2 = i, so the formula above reads:

ck =
1 + (−1)k − ik − i−k

2πik
=

1 + (−1)k − 2Re(ik)

2πik

Since ik is equal to 1, i, −1 or −i, depending on whether k is equal to 4n + 0, 1, 2 or 3,
respectively, it is easy to see that:

ck =

{
2
πik

if k = 4n+ 2

0 otherwise

We conclude that:

f(x) =
1

2
+ 2

∑
k=4n+2

eikx

πik

(4) Compute the real Fourier series of f (using sines and cosines) by applying the formula:

eix = cosx+ i sinx

to the right hand side of formula (∗) in part (3). Simplify as much as possible. (10 pts)

Solution: Replacing x by kx in the formula above gives us eikx = cos kx + i sin kx. So the
Fourier series is given by:

f(x) =
1

2
+ 2

∑
k=4n+2

cos kx+ i sin kx

πik

To bring the formula above into real form, we need to combine the term corresponding to
k > 0 with the term corresponding to −k < 0:

f(x) =
1

2
+ 2

∑
k=4n+2,n≥0

(
cos kx+ i sin kx

πik
+

cos kx− i sin kx

−πik

)
=

1

2
+ 4

∑
k=4n+2,n≥0

sin kx

πk

(5) Using parts (1)-(4), compute the value of the Fourier series from (∗) at x = π
2
, i.e.:∑

k∈Z

cke
ik π

2



where ck are the coefficients you computed in part (1). (5 pts)

Solution: We have:

1

2
+ 2

∑
k=4n+2

e
ikπ
2

πik
=

1

2
+ 2

∑
k=4n+2

ik

πik
=

1

2
− 2

∑
k=4n+2

1

πik
=

1

2

The reason for the last equality is that the expression 1
πik

for a given k > 0 cancels out the

expression 1
−πik for −k < 0.

(6) How does the value of the Fourier series at x = π
2

compare to the value of f
(
π
2

)
? How

do you explain this? (10 pts)

Solution: The value of the Fourier series, namely 1
2
, is precisely midway between the left

and right limits of the function f near x = π
2
. This makes sense, because if we simply

changed the value of f at x = π
2

(without changing any of the other values) from 0 to 1,
then this would not change the integrals that give rise to the Fourier coefficients.

PROBLEM 5

Throughout this problem, we will work with the matrix:

Z =

2 −1 −1
6 −2 −4
1 −1 0


(1) Compute the characteristic polynomial of Z, and work out the eigenvalues. (15 pts)

Points will be taken off if you use the diagonals’ method (a.k.a. Sarrus’ rule) to compute
3× 3 determinants. Use row reduction, cofactor expansion, or the big formula instead, and
explain your process in detail.

Solution: the characteristic polynomial is:

p(λ) = det

2− λ −1 −1
6 −2− λ −4
1 −1 −λ

 = (2− λ) · (−1)1+1 det

[
−2− λ −4
−1 −λ

]
+

+(−1) · (−1)1+2 det

[
6 −4
1 −λ

]
+ (−1) · (−1)1+3 det

[
6 −2− λ
1 −1

]
=

= (2− λ)(λ2 + 2λ− 4) + (4− 6λ)− (λ− 4) = −λ3 + λ = −λ(λ2 − 1) = −λ(λ− 1)(λ+ 1)

So the eigenvalues are 1, 0 and −1.



(2) Diagonalize Z, i.e. write it as:

Z = V DV −1

for an invertible matrix V and a diagonal matrix D. (15 pts)

Important for the following parts: the diagonal entries of D should be the eigenvalues
of Z, in order from the largest to the smallest.

Solution: Let’s compute eigenvectors for the eigenvalues 1,0, −1. I will show the process
for the former, and then just give the answers for the latter. We need:

v1 ∈ N(Z − I) = N

1 −1 −1
6 −3 −4
1 −1 −1

 = N

1 −1 −1
0 3 2
1 −1 −1

 = N

1 −1 −1
0 3 2
0 0 0


So we need v1 =

xy
z

 where:

1 −1 −1
0 3 2
0 0 0

xy
z

 ⇔


x− y − z = 0

3y + 2z = 0

0 = 0

We can pick z = 1 and then solve for the other variables by back substitution. We get:

v1 =

 1
3
−2

3
1


Similarly, for the other eigenvectors we get:

v2 =

1
1
1

 and v3 =

1
2
1


So we need to take V =

 1
3

1 1
−2

3
1 2

1 1 1

 and D =

1 0 0
0 0 0
0 0 −1

.

(3) For a general 3× 3 matrix:

Y =

y11 y12 y13

y21 y22 y23

y31 y32 y33


find matrices M and N such that:

MY =

[
y11 y12 y13

y31 y32 y33

]
and Y N =

y11 y13

y21 y23

y31 y33


No explanation needed here. Pay attention to the indices! (10 pts)



Solution: We need to take M =

[
1 0 0
0 0 1

]
and N =

1 0
0 0
0 1

.

(4) Using the previous parts of the problem, find 2× 2 submatrices A,B and C of the 3× 3
matrices V,D and V −1 (respectively) such that:[

2 −1
1 0

]
= ABC

“Submatrix” means that, for instance, A is obtained from V by removing one row and one
column (you do not need to write A explicitly, but make sure you say which row/column
you need to remove from V to get it; explain your reasoning) (10 pts)

Hint: look at the 2× 2 matrix

[
2 −1
1 0

]
in relation to Z.

Solution: We observe that the matrix

[
2 −1
1 0

]
is obtained by deleting the second row and

second column of Z. Therefore, by part (3), we have:[
2 −1
1 0

]
= MZN

But now let’s replace Z by its diagonalization from part (2), so we have:[
2 −1
1 0

]
= MV ·D · V −1N

Suppose V =

v11 v12 v13

v21 v22 v23

v31 v32 v33

 and V −1 =

v11 v12 v13

v21 v22 v23

v31 v32 v33

 (we can actually get numbers for

these vij and vij, but they will not be necessary to make this argument). So we have:[
2 −1
1 0

]
=

[
v11 v12 v13

v31 v32 v33

]1 0 0
0 0 0
0 0 −1

v11 v13

v21 v23

v31 v33


However, because the second row and column of the middle matrix consists only of zeroes,
all v’s and v’s with an index of 2 are not involved in the formula above. We conclude that:[

2 −1
1 0

]
=

[
v11 v13

v31 v33

] [
1 0
0 −1

] [
v11 v13

v31 v33

]
So A, B, C are obtained by V , D, V −1 by removing the second row and second column.

PROBLEM 6

This problem consists of two parts: probability and statistics. While the language describing
these two situations is often the same, the linear algebra tools used are different. So consider



the two as different problems from a mathematical standpoint.

PROBABILITY: Paul the Octopus is not only good at predicting soccer scores, but he has
magic powers. In his tank there are two boxes, one with the Dutch flag and one with the
Spanish flag. Every time Paul creeps into one of the boxes, the respective soccer team scores
a goal. However, for some reason Paul seems to prefer visiting the box with the Spanish flag
k times more often than the box with the Dutch flag, where k is a natural number.

(1) What is, as a function of k, the probability that any one of Paul’s visits is to the Dutch
box? Same question for the Spanish box. (5 pts)

Solution: let ps and pd be the probabilities that Paul visits the Spanish and Dutch box,
respectively. By assumption:

ps = k · pd
However, probabilities must sum up to 1, so we have ps + pd = 1. Solving this system yields:

ps =
k

k + 1
and pd =

1

k + 1

(2) Now suppose that Paul makes two consecutive (independent) visits to the boxes, accord-
ing to the rule above. Consider the random vector:

v =

[
s
d

]
where s (respectively d) keeps track of how many goals the Spanish (respectively Dutch)
team scored as a consequence of these two visits. What are the possible values for the vector
v and what are their probabilities? (5 pts)

Solution: The random vector v can take the value:[
2
0

]
with probability p2

s =
k2

(k + 1)2
(S scores both goals)[

1
1

]
with probability 2pspd =

2k

(k + 1)2
(S scores goal one, D scores goal two, or vice-versa)[

0
2

]
with probability p2

d =
1

(k + 1)2
(D scores both goals)

(3) Compute the mean (i.e. the expected value) of the random vector v. (5 pts)

Solution: We have:

µ =
k2

(k + 1)2

[
2
0

]
+

2k

(k + 1)2

[
1
1

]
+

1

(k + 1)2

[
0
2

]
=

2

k + 1

[
k
1

]



(4) Compute the covariance matrix of the random vector v. (10 pts)

Solution: We have:

K =
k2

(k + 1)2

([
2
0

]
− µ

)([
2 0

]
− µT

)
+

2k

(k + 1)2

([
1
1

]
− µ

)([
1 1

]
− µT

)
+

+
1

(k + 1)2

([
0
2

]
− µ

)([
0 2

]
− µT

)
=

2k

(k + 1)2

[
1 −1
−1 1

]

(5) Diagonalize the covariance matrix computed in the previous bullet. Because the eigen-
values and eigenvectors are simple, you are allowed to simply guess them.

(10 pts)

Solution: Let’s diagonalize the matrix

[
1 −1
−1 1

]
. First, its characteristic polynomial is:

p(λ) = det

[
1− λ −1
−1 1− λ

]
= (1− λ)2 − 1

The roots of this polynomial are λ1 = 2 and λ2 = 0. It’s easy to show that eigenvectors
corresponding to these two eigenvalues are:

v1 =

[
1
−1

]
and v2 =

[
1
1

]
So we have: [

1 −1
−1 1

]
= V DV −1 where V =

[
1 1
−1 1

]
and D =

[
2 0
0 0

]
The matrix K has the same diagonalization, but with D multiplied by 2k

(k+1)2
.

(6) One of the eigenvalues of the covariance matrix should be 0. If:[
v1

v2

]
is the corresponding eigenvector, then the random variable v1 · s+v2 ·d should have variance
0. How do you explain this intuitively (i.e. based on the original probability setup)? (5 pts)

Solution: The eigenvector of 0 is

[
v1

v2

]
=

[
1
1

]
, so the discussion above suggests that the

random variable s+ d should have variance 0. This makes sense intuitively, because s+ d is
equal to the total number of goals scored, which is equal to 2 no matter which boxes Paul
visits.



STATISTICS : Suppose you have m sets consisting of n samples each. You may think of
these sets as vectors a1, . . . ,am, and collect them as the columns of an n×m matrix:

A =
[
a1 . . . am

]
=

a11 . . . a1m
...

. . .
...

an1 . . . anm


The goal of principal component analysis (PCA) is to diagonalize the covariance matrix:

K =
ATPA

n− 1
= QDQT

where P = 1
n


n− 1 −1 . . . −1
−1 n− 1 . . . −1
...

...
. . .

...
−1 −1 . . . n− 1

 = In − 1
n


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

.

(7) Show that P 2 = P and P T = P . (5 pts)

(you may give either a geometric argument, or one via algebraic manipulations with matrices)

Solution: Let R =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

. Then it’s easy to see that R2 = nR, hence:

P 2 =

(
In −

R

n

)2

= In −
2R

n
+
R2

n2
= In −

R

n
= P

Alternatively, P 2 = P is a general property of projection matrices (and indeed our P is the

projection onto the orthogonal complement of the vector

1
...
1

). The statement about P T is

obvious by direct computation; also, projection matrices are always symmetric.

(8) Suppose you had a machine which takes in any matrix, and produces the matrices U , Σ
and V that give its singular value decomposition UΣV T . How can you use this machine to
obtain the orthogonal matrix Q in the boxed formula on the previous page? (5 pts)

Solution: We have K = ATPA
n−1

= ATP 2A
n−1

= ATPTPA
n−1

= (PA)T (PA)
n−1

. Now apply our SVD
machine to the matrix:

PA = UΣV T

and we get:

K =
1

n− 1
· V ΣT UTU︸ ︷︷ ︸

I

ΣV T =
1

n− 1
· V ΣTΣV T



Since the matrix ΣTΣ is diagonal and V is orthogonal, we conclude that V = Q.

PROBLEM 7

(1) Fill in the blanks. The orthogonal complement of the vector:

a =

 1
0
−1


consists of all vectors

xy
z

 which satisfy the equation x− z = 0 (5 pts)

(2) Choose basis vectors b and c of the orthogonal complement of a, and explain why b, c
form a basis. Hint: your future will be easier if you pick b and c to be orthogonal. (10 pts)

Solution: A basis of the plane {x− z = 0} consists of any two vectors in this plane which
are not proportional to each other. A possible choice is:

b =

0
1
0

 and c =

1
0
1


(we chose these vectors such that b ⊥ c; the way you can do this is to choose b arbitrarily
and then the three coefficients of c are constrained by two linear conditions: perpendicularity
with a and with b).

(3) Compute the projection matrix P onto the orthogonal complement of a. (10 pts)

Solution: Consider the matrix:

A =
[
b c

]
=

0 1
1 0
0 1


Then the projection matrix is given by:

P = A(ATA)−1AT =

0 1
1 0
0 1

[0 1 0
1 0 1

]0 1
1 0
0 1

−1 [
0 1 0
1 0 1

]
=

=

0 1
1 0
0 1

[1 0
0 2

]−1 [
0 1 0
1 0 1

]
=

0 1
1 0
0 1

[1 0
0 1

2

] [
0 1 0
1 0 1

]
=

1
2

0 1
2

0 1 0
1
2

0 1
2





(the fact that we chose b and c to be perpendicular caused the 2× 2 matrix in the formula
above to be diagonal, which meant that it had a simple inverse).

(4) Consider the energy of an arbitrary vector with respect to the matrix P :

[
x y z

]
P

xy
z


Compute a formula for the energy and show that it is non-negative for any real numbers
x, y, z. (10 pts)

Solution: We have:[
x y z

] 1
2

0 1
2

0 1 0
1
2

0 1
2

xy
z

 =
x2 + 2xz + z2

2
+ y2 =

(x+ z)2

2
+ y2

It is clearly non-negative for all x, y, z, as it is a sum of two squares.

(5) Find x, y, z (not all zero) for which the energy as above is 0. (5 pts)

Solution: Since the energy is a sum of two squares, it is 0 only when the individual squares
are 0, so we need x+ z = y = 0. Therefore, a choice of vector is:xy

z

 =

 1
0
−1


(any multiple of this vector would have also worked).

(6) Fill in the blanks. The matrix P is positive semi-definite (5 pts)

(7) Fill in the blanks. The vector a and an arbitrary non-zero vector

xy
z

 for which the

energy is 0 are proportional. (5 pts)

Although we accept synonyms of the word “proportional”, we will deduct 2 points for the

answer “equal”, since the vector

xy
z

 is only defined up to scalar multiple.


